
Cardocket Programming

How to

Track and Control anything

Revision 2.506

(c) 2014 Cardocket PTY (LTD)

Introduction

The Cardocket programming language is based on the BASIC programming language, making it a
superb tool for learning to program. Experienced programmers will quickly be able to write
complex programs in a style similar to more powerful languages, such as C or Java.

If you're new at programming, it will be easiest to first look at the examples and then read the more
technical stuff that follows.

Disclaimer

Alhough every effort has been made to ensure the accuracy of the contents of this manual,
Cardocket cannot be held liable for any damages directly or indirectly resulting from errors in this
manual.
Cardocket will under no circumstances be held liable for any damages or injuries resulting from the
use of this product.

Overview of the Cardocket Programming language

The Cardocket programming language has a very loose syntax, making it easy to write code in the
style you feel comfortable with. For example, the following code (in typical BASIC style):

IF NAME$ = "JOHN" THEN BEGIN

match = match + 1

..........

END

can also be written as follows (C style):

if (name$ == "John")

{

 match++;

;

}

Variables

Variables are not declared and can consist of a combination of letter, numbers and underscores, e.g.
variable1 and My_name.

Variables are not case-sensitive, thus apple and APple will point to the same variable.

All variables are floating point, but can be treated as integers.

To declare a variable as a string variable, put a dollar sign after it, e.g. string_variable$

String variables can be compared, e.g. If name$ = "PETER"

and added together, e.g. full_names$ = "John " + "Doe"

String and number variables can also be added, e.g.

age = 10

string$ = "I am " + age + " years of age"

will result in: "I am 10 years of age"

If the number is a decimal, the string will output up to 3 decimal characters, e.g.

pi = 3.14159265359

string$ = "pi = " + pi

will result in: "pi = 3.141"

or

value = 1.400287

string$ = "Value = " + value

will result in "Value = 1.4"

Code execution

A typical program will consist of blocks of code that executes on specified triggers, e.g.

STARTUP: code to execute once when the module starts up

TIMER: code that executes every x milliseconds, where the interval can be specified and changed
during execution of the program.

INCOMING CALL: Code to execute when receiving a call

INCOMING SMS: Code to execute when receiving an SMS

MOVEMENT: code to execute when detecting movement of the module.

Examples

Hello World Example

The first example replies to an incoming SMS with the message: "Hi there -Thanks for your
message:" and the original message.

* Click on "Incoming SMS" on the debugger and insert the following code:

if (stringlength(SMS_MESSAGE$)>0) sendSMS(SMS_NUMBER$, "Hi There - Thanks for your
message: "+SMS_MESSAGE$)

else sendSMS(SMS_NUMBER$, "Why so quiet?")

* Now click on “Debug” and make sure it doesn't show any errors.

* If a Cardocket unit is connected via USB, you can download the code to the unit by clicking on
“Send code to unit”. Or you can test it in the debugger – click on the “Send” button and see what
happens on the notification window.

That's it!

When receiving an SMS, the system string SMS_MESSAGE$ will contain the incoming message
and SMS_MESSAGE$ will contain the message.

The command: sendSMS(number, message) sends an SMS back to the incoming number with the
new message.

Note that all strings ends with a dollar sign ($) whereas number variables don't.

Detect Movement Example

This example will switch on the LED when it detects movement.

* First we need to set-up the unit once, so click on "Start-up" and insert the following code
(remember, code after // is comments to make the program easier to understand and will be ignored
by the program):

OVERRIDE_LED = 1 //we want full control of the LED

// execute code under "Movement" when it detects a change of 0.2G or more in any direction

ACC_THRESHOLD = 0.2

TIMER_INTERVAL = 10 //execute code under "Timer" every 10 milliseconds

* Click on "Movement" and add the following:

LED_timer=10 //our own variable. Every time it detects movement it will set LED_timer to 10

* Lastly, click on "Timer" and add the following to execute every 10 milliseconds

if (LED_timer>0) then begin

LED=1 //switch the LED on, (1=green, 2=red)

LED_timer = LED_timer – 1 //decrement the timer to make it switch off again

end

else LED=0 //switch off LED

* Click on Debug to run it in the simulator, or send the code to the unit for a live demo!

Programming Reference

Conditional statements

Command Description Usage

IF

THEN

ELSE

BEGIN

END

If [condition] then [statement]
else [other statement]

Alternative notation:

{ (begin)

} (end)

Note: else is optional

IF x<10 THEN x=x+1
ELSE x=0

IF x<10 THEN BEGIN
 x=x+1
 y=y+1
END
ELSE BEGIN
 x=0
 y=0
END

AND

OR

Logical operators. Used when
testing for more than one condition,
e.g. If apples>10 AND pears>10

Alternative notation:
&& (AND)
|| (OR)

IF apples>10 AND pears>10 THEN BEGIN
........
END

IF apples>10 && pears>10 THEN

Comparison

Command Description Usage

=

>

>=

<

<=

<>

Comparison and assignment
Alternative notation:
==

Greater than

Greater than or equal

Less than

Less than or equal

not equal
Alternative notation:
!=

If a=1 then b=1

if a>1 then

if a>=1 then ...

if a<1 then...

if a<=1 then...

if a<>1 then (if a!=1 then ...)

if a!=1 then

Operations

Command Description Usage

*

/

+

-

++

--

Multiply

Divide

Add

Subtract

increment variable (x=x+1)

decrement variable (x=x-1)

a = 3*2

a = 3/2

a = a+1

a = a-1

if a<10 then a++

if a>10 then a--

Bitwise Operations

Command Description Usage

&

|

^

%

AND

OR

XOR

Modulus (remainder)

a = a & 7

a = a | 8

a = a^1

a = a%5

Functions

Command Description Usage

wait(milliseconds) Pause execution of code for
specified number of milliseconds

LED=1
wait(5000)
LED=0

return Stops execution of code.

Note: this command doesn't
terminate the whole program, e.g. If
running the timer task, it will stop
execution of currently running code,
but will still restart when next timer
is due.

return

makeCall(number) Makes a call to specified
number.

The call will be terminated as soon
as it's answered or after ringing for
more than 20 seconds.

Can also be used for USSD queries,
e.g. makeCall("*100#")

makeCall("08212345")

replyUSSD(string); Reply to a USSD string, usually an
option from a menu

replyUSSD(“4”);

sendSMS(number, message) Sends an SMS to the specified
number with message up to 160
characters long

SendSMS("08212345","This is the
SMS text")

accelCalibrate() Calibrates the accelerometer

Make sure the unit is flat on a rigid
surface before running this
command. It's only necessary to run
it once as calibration values are
stored in memory.

accelCalibrate()

connectWeb(address) Connect to a website, usually to
send data.
Note: Also set
OVERRIDE_GPRS=1

connectWeb(“http://www.cardocket.
com/update.php?data=12345”)

sendData(dataString) Send a data string to the cardocket
website. String consists of numbers,
seperated by commas. Maximum
length of string = 200

sendData(“123,0.01,55.4”)

random(max) Generates a random number
between 0 and max

random(10) will return a value
between (and including) 0 and 10

randomize() Seeds the random number generator.
Run this once after startup to
prevent the same random sequence
after each startup.

randomize()

distanceFrom(latitude,longitude) Calculates the current distance in
meters from specified latitude and
longitude

d=distanceFrom(-32.768,29.567)

deviceID() Returns device ID as a string. id$ = deviceID()

String Functions

Command Description Usage

subString(string,startPos,length) Returns part of a string, from
position startPos, with specified
length.
Note: startPos starts at 1, not zero.

string$ = subString(“Hi there”,4,5)
will set string$ to “there”

stringPos(haystack,needle) Returns the position of string
“needle” in string “haystack”.
Returns 0 if not found.
Note: index starts at 1, not zero

pos=stringPos(“eat me”,”me”)
will return pos=5

stringLength(string) Returns the length of a string stringLength(“Hello there!”) will
return 12

Flash functions
Saving variables to flash will be stored permanently. Thus even after removing power they will keep their values.

Command Description Usage

flashWriteValue(position,value) Save a value to flash at specified
position. Position = 0 .. 255

flashWriteValue(0,10000)

flashReadValue(position) Read a value from flash at specified
position. Position = 0 .. 255

saved = flashReadValue(0)

flashWriteString(position,string) Save a string to flash at specified
position. Position = 0 .. 7.
Each string can be up to 128
characters

flashWriteString(2,”Hi There”)

flashReadString(position) Read a string from flash at specified
position. Position = 0 .. 7.
Each string can be up to 128
characters

saved$ = flashReadString(2)

I2C Functions
Used to communicate with a device via the I2C protocol.
Connect IO1 to SCK (clock) and IO2 to SDA (data) of the device.

Command Description Usage

I2C_START() Send I2C start condition I2C_START()

I2C_STOP() Send I2C stop condition I2C_STOP()

I2C_WRITE(data) Send 8 bits (1 byte) to the device I2C_WRITE(22)

I2C_READ(acknowledge) Read 8 bits (1 byte) from the device,
send acknowledge (1) or not (0)

data = I2C_READ(1)

1-Wire Functions
Used to communicate with a device via the 1-Wire protocol. Data is send on IO3.
Typical device: DS18B20 for temperature measurement

Command Description Usage

OW_RESET() Do a 1-Wire reset OW_RESET()

OW_SEARCH_ROM(first_device) Returns the ROM codes of devices
on the 1-wire bus.
Set first_device=1 to get first
device, set first_device=0 to get
rest of the devices

device1$ = OW_FIND_ID(1)
device2$ = OW_FIND_ID(0)
device3$ = OW_FIND_ID(0)

OW_WRITE(data) Send 8 bits (1 byte) to the device OW_WRITE(20)

OW_READ() Read 8 bits (1 byte) from the device data = OW_READ()

CRCDOW(crc,data) Calculates an 8 bit CRC DOW
value. CRC DOW is used by 1-wire
products.

crc = 0
crc = CRCDOW(crc,byte1)
crc = CRCDOW(crc,byte2)

Single Bus Functions
Used to communicate with a device via the Single Bus protocol. Data is send on IO3.
Typical device: AM2301 for temperature and humidity measurement

Command Description Usage

SB_read(bytes_to_read) Read bytes from a device
Returns the number of bytes
read from device.

if (SB_read(5) != 5) return

SB_next_value() Returns next value read from
device

SB_read(2)
val1 = SB_next_value()
val2 =SB_next_value()

Miscellaneous

Command Description Usage

// Comment a=a+1 //this is a comment

;

()

Semi-colons at the end of each line
is optional

brackets when using if statements is
optional. “Then“ can also be left out.

a=a+1;
a=a+1

if a=1 then ...
if (a=1) ...

System Variables

Name Type Description

PROGRAM_ERRORS integer Number of times the interpreter encountered an
error in the code. It should be zero for a bug-free
program.

SECONDS_SINCE_STARTUP integer Seconds elapsed since the unit started up, or since
the new program was loaded.

SECONDS_SINCE_GPRS_UPD
ATE

integer Seconds since the last successful GPRS connection

TIMER_INTERVAL integer Duration in milliseconds between code that execute
on a timer. E.g. Set to 1000 to execute timer code
every 1 second.

OVERRIDE_LED integer Set to 1 to gain full control over the status LED.
Note: When switching an LED, (e.g.LED=1)
OVERRIDE_LED will automatically be set to 1

OVERRIDE_GPS integer Control GPS status.
0: GPS on/off controlled by Cardocket Defaults
1: Force GPS to switch on
2: Force GPS to switch off

OVERRIDE_GSM integer Control GSM status.
0: GSM on/off controlled by Cardocket Defaults
1: Force GSM to switch on
2: Force GSM to switch off

OVERRIDE_TRIP integer Control trip start/stop
0: Start/stop controlled by Cardocket defaults
1: Force trip to start
2: Force trip to stop

OVERRIDE_LOW_POWER integer Set low power mode
0: Low power mode controlled by Cardocket
defaults
1: Force unit to not to go to low power mode,
unless battery is very low
2+ Force unit to go to low power mode for number
of seconds.
e.g.
OVERRIDE_LOW_POWER=600
unit will go to low power mode for 600 seconds.
Thereafter OVERRIDE_LOW_POWER will be set
to 1.
Note: if unit is in low power mode, it will be
waken if movement detected that's greater than
ACC_THRESHOLD

OVERRIDE_GPRS integer Control GPRS settings
0: GPRS connection handled by cardocket defaults
1: Do not connect to cardocket website. Use
connectWeb() to send and receive data from
custom website.

PULSE_THRESHOLD1
PULSE_THRESHOLD2

float Voltage threshold to detect pulses. PULSES_IO1
will be incremented if input on IO1 goes from a
voltage lower than PULSE_THRESHOLD1 to a
voltage higher than PULSE_THRESHOLD1.
The same goes for PULSE_THRESHOLD2 and
IO2
Note: Input 3 is a digital input (0..3.3V and the
threshold for pulses is fixed)

ACC_THRESHOLD float Threshold for accelerometer before triggering a
movement event.
Thus is ACC_THRESHOLD=0.5, the difference in
X, Y and Z (ACC_DETECT) must be greater then
0.5G's to trigger movement.

LED integer Read or set the LED status.
0: LED off
1: LED Green
2: LED Red

IO1
IO2

float Read or set voltage on IO1 and IO2:
Read:
Voltage on IO (0 to 32V)

Write:
0: Force output to GND / 0V
1: Disconnect output (High Impedance state)

IO3 integer Read or set voltage on IO3
Read:
Voltage on digital IO3 (0=low/0V, 1=high/3.3V)

Write:
0: Force to GND (0V)
1: Pull-up High (1k ohm to 3.3V)
2: Force High (3.3V)

PULSES_IO1
PULSES_IO2
PULSES_IO3

integer Pulses counted on IO1 ... IO3.
IO3 is a digital input and will count pulses between
0 and 3.3V. Threshold is around 2 Volts

VOLT_BATT float Voltage measured on internal battery. A fully
charged battery should read 4.2V and a depleted
battery below 3.3V

VOLT_SUPPLY Float Voltage measured on supply pin. Can be anything
between 0V and 32V

VOLT_USB float Voltage measured on USB. Should be around 5V if
USB connected.

VOLT_GSM float Voltage measured on GSM supply. Should be
between 3.3V and 4.5V

GPS_SPEED integer Speed (in Km/h) measured by GPS

GPS_DIR integer Direction of travel as measured by GPS. Between 0
and 360 degrees.

GPS_HDOP float Reliability of GPS lock. Lower is better.

GPS_FIX integer Does GPS have a fix?
0: No fix
2: 2D fix
3: 3D fix

GPS_SAT integer Number of satellites in GPS view

GPS_LOCK integer Number of satellites GPS has locked on

GPS_LAT
GPS_LNG

float GPS latitude and Longitude coordinates

GSM_STATUS integer Status of GSM module:
0: switched off
1: not registered
2: registration denied
3: no SIM card detected
4: PIN on SIM
5: PUK on SIM
6: Registered
7: Making a call
8: Ringing
9: Talking
10: call terminated
11: incoming SMS
12: incoming call

GSM_SIGNAL integer Signal strength of GSM. Scale of 0 ...100 (100 =
strongest signal)

GSM_ROAMING integer Indicates whether the modem is roaming on a
network or not.
0 = Registered to Home network
1 = Registered to other network (National or
International)

TRIP_STATUS integer Status of trip:
0 = Stopped
1 = Driving

TRIP_DISTANCE integer Distance in meters of current trip

TRIP_BUSINESS integer Sets the current trip type:
0 = Private Trip
1 = Business trip
As soon as a trip is marked as stopped, the current
value of TRIP_BUSINESS will determine the trip
type.

AXX_X float Accelerometer value in X axis, 1=1G

AXX_Y float Accelerometer value in Y axis, 1=1G

AXX_Z float Accelerometer value in Z axis, 1=1G

ACC_DETECT float Intensity of movement detected. Sum of difference
in acceleration in X, Y and Z direction

RTC_SECOND
RTC_MINUTE
RTC_HOUR
RTC_DAY
RTC_MONTH
RTC_YEAR

integer Values of internal clock. The unit gets the time
from the GPS.

RTC_DAY_OF_WEEK Integer Day of week.
0: Sunday
1: Monday
2: Tuesday
3: Wednesday
4: Thursday
5: Friday
6: Saturday

